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A Lagrangian boundary element approach to transient
three-dimensional free surface flow in thin cavities
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SUMMARY

The lubrication theory is extended for transient free-surface flow of a viscous fluid inside a three-
dimensional thin cavity. The problem is closely related to the filling stage during the injection molding
process. The pressure, which in this case is governed by the Laplace’s equation, is determined using the
boundary element method. A fully Lagrangian approach is implemented for the tracking of the evolving
free surface. The domain of computation is the projection of the physical domain onto the (x, y) plane.
This approach is valid for simple and complex cavities as illustrated for the cases of a flat plate and a
curved plate. It is found that the flow behavior is strongly influenced by the shape of the initial fluid
domain, the shape of the cavity, and inlet flow pressure. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This study examines the numerical solution for a viscous incompressible fluid flowing inside a
three-dimensional thin cavity, with special emphasis on the filling stage of the injection
molding process. A wide range of flow problems in polymer processing involve the presence of
a free surface. In some processes such as blow molding, thermoforming and conventional
injection molding, the flow is strictly unsteady. In other processes, such as film blowing, wire
coating and extrusion, most of the interest lies in the long-term behavior, after transients have
died out. The flow may then be studied in the steady state regime.

The numerical simulation of free surface flow problems remains challenging despite the
advent of powerful techniques. Typically, a flow problem of the moving type, which involves
geometrical non-linearities, must be addressed. In contrast to conventional problems in fluid
dynamics, the domain of computation, which is bounded in part by the free surface, is not
known a priori since the shape of the free surface itself must be determined as part of the
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solution. In steady state problems, a number of iterations are usually needed in order to reach
the precise form of the free surface. The problem becomes even more challenging when in
addition the shape of the free surface evolves with time, generating large distortions in the
discretized domain of the fluid. While large distortions have been reasonably well handled for
two-dimensional free surface flows, major issues remain open regarding complex three-
dimensional problems.

Several numerical techniques have been developed for the solution of moving boundary/
initial value problems. These techniques may be classified as Eulerian, Lagrangian, and mixed
Eulerian–Lagrangian [1]. In the Eulerian description of the flow, the grid points remain
stationary or move in a predetermined manner [2–5]. Typically, the fluid moves in and out of
the computational cells. The method can handle arbitrarily large free surface deformations
without loss of accuracy. Its main disadvantage, however, is the lack of sharp definition of the
free surface, and the consequent difficulty to impose the kinematic and dynamic boundary
conditions on the free surface. In the Lagrangian approach, the grid points move with local
fluid particle [6,7]. The free surface is sharply defined and it is easy to impose the necessary
boundary conditions. However, Lagrangian methods require mesh refinement or remeshing for
large deformations of the free surface. Hybrid methods have also been developed that combine
the advantages of the Eulerian and Lagrangian methods [8].

More recently, some of the basic techniques have been improved. Peterson et al. [9]
proposed an iterative automatic mesh generation for a free-surface flow in an initially arbitrary
domain. A second-order model based on the volume-of-fluid method was proposed by Kim
and No [10] for free surface convection and interface reconstruction. The methodology defines
the second-order linear curve having both face slopes as near horizontal as possible while
satisfying the cell’s defined volume fraction [10]. In free surface flow, the determination of the
normal vector and its gradient is crucial for front advanced and the inclusion of surface-
tension effect. In this regard, Engelman and Sani [11] introduced the notion of mass-consistent
normal free-surface flow. Other techniques have also been developed in relation to drop
deformation and interfacial phenomena. Mashayek and Asgriz [12] proposed a spine-flux
method, which is based on discretizing the liquid surface by a spine function, and spine
subdivision of the liquid zone into conical sub-volumes. The problems of drop oscillation and
drop collision were examined. The analysis of capillary-driven flow during sintering was
carried out by Martinez-Herrera and Derby [13] using a front-tracking method coupled with
algebraic mesh generation. The formation of a drop of liquid from a capillary tube into an
ambient gas phase was studied by Wilkes et al. [14]. A finite element algorithm was
implemented, which incorporates a multiregion mesh that conforms to and evolves with the
changing shape of the drop. Finally, Levesque and Li [15] presented a second-order accurate
interface tracking method for the solution of Stokes flow with elastic boundaries or surface
tension. The interface is represented by a cubic spline along which the singularity supported
elastic or surface tension force could be computed.

Generally, an adaptive Lagrangian approach becomes difficult to implement when a volume
method such as the finite element method (FEM) is used. On the other hand, the boundary
element method (BEM) is much easier to use along with adaptive remeshing as the dimension
of the problem is reduced by one. The BEM relates velocities at points within the fluid to the
velocity and stress on the bounding surfaces. It is thus an ideal method for studying
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moving-boundary problems where the velocity on the moving boundary is the quantity of
prime interest. The advantages of the BEM include: reduction of problem dimensionality,
direct calculation of the velocity at the moving boundary, the ability to track large surface
deformations, and the potential for easy incorporation of interfacial tension as well as other
surface effects. Recent studies by Khayat and co-workers on the applicability of the BEM to
problems of the moving-boundary type include the deformation of a drop in a confined
medium of Newtonian and non-Newtonian systems [16–21], conventional and gas-assisted
injection molding [22,23], air venting during blow molding and thermoforming [24], and the
transient mixing of Newtonian and viscoelastic fluids [25,26]. Khayat and Marek [27] devel-
oped an adaptive three-dimensional BEM for the transient free surface in a confined medium.
The formulation and numerical implementation are illustrated for a flow advancing inside and
exiting a confining cavity, typically as the flow is encountered in extrusion. The method was
also used to examine the three-dimensional deformation of a drop in viscoelastic systems [20].

The present study focuses on the flow inside a three-dimensional thin cavity, typically as this
flow is encountered during the filling stage in injection molding or through the die at the exit
of an extruder. However, shear-thinning and viscoelastic effects are not accounted for in this
study. While the BEM has obvious advantages over conventional domain methods for the
treatment of moving domain flows, it suffers from severe drawbacks. A number of simplifying
assumptions must be adopted for the BEM to become applicable. Despite the advent of recent
non-linear BEM techniques [28–31], the method remains seriously challenged by conventional
approaches in its capability to handle transient and non-linear problems. The inherent
transient nature of the flow process and the presence of a moving free surface make the
simulation of the problem challenging because of the geometrical non-linearities involved [1].
The challenge becomes even greater if inertia or non-Newtonian effects are included. Such
non-linear phenomena have been addressed in moving-boundary problems with relevance to
polymer processing [32–35]. However, these problems were limited to simple flow configura-
tions, and definitely to two-dimensional or axisymmetric flows. Viscoelastic effects were
examined, for instance, on the growth of spherical and cylindrical shells of a fluid obeying a
highly non-linear viscoelastic constitutive model [34]. The deformation of a viscoelastic column
was also examined [35].

2. PROBLEM FORMULATION

In this section, the basic assumptions for the lubrication equations are first briefly reviewed for
viscous fluids. The theory is then extended to include the transient free surface flow inside thin
three-dimensional cavities.

2.1. General equations, initial and boundary conditions

Consider an incompressible Newtonian fluid of density �, viscosity �, and surface tension
coefficient �. Gravity effect is assumed to be negligible. If (x1, x2, x3) denotes the three-
dimensional system of Cartesian co-ordinates, with x being the position vector, then the
conservation equations for an incompressible fluid can be concisely written as:
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� ·u=0, �(u,T+u·�u)= −�P+��2u (1)

where a subscript after a comma denotes partial differentiation, u(u1, u2, u3) is the velocity
vector, P is the pressure, T is the time, and � is the gradient operator.

The lubrication assumption is the hydrodynamic analog of shell theory for solids. In most
lubrication films the thickness of the film is small compared with its lateral dimensions.
Properly handled, this observation can be used to eliminate from the hydrodynamic equations
and boundary conditions the dependence upon one of the three spatial variables. The
continuity equation is integrated across the film and the Navier–Stokes equation is used to
evaluate the quantities appearing as integrands. Consider the flow of a thin continuous film of
incompressible fluid between two rigid surfaces x3=F1(x1, x2) and x3=F2(x1, x2). Then the
film thickness is defined by

H(x1, x2)=F2(x1, x2)−F1(x1, x2) (2)

The conservation Equations (1) are now formulated in the narrow-gap limit. It is convenient
to cast these equations in terms of dimensionless variables. Typically, in thin-cavity flow, there
are three characteristic lengths, L1 and L2 along the lateral directions x1 and x2, and H0, which
represents the thickness of the cavity in the x3-direction. Figure 1 illustrates schematically the
general flow and notations used. The figure shows a step of the filling stage of a thin cavity
of general shape. The fluid is assumed to occupy a simply-connected region, �(t), which is
bounded by �(t). The boundary consists of the moving free surface or front, �f(t), the wetted
part of the cavity, �w(t), and a source region, �s, at the entrance to the cavity.

The fluid is assumed to be initially at rest, so that

u(x, t=0)=0, x��(t=0) (3)

Figure 1. Schematic illustrating the transient free-surface flow inside a cavity induced by the imposed
flow at the source boundary, �s.
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The boundary conditions are prescribed as follows. The fluid is assumed to adhere to the top
and bottom cavity surfaces

u(x, t)=0, x3=F1(x1, x2) or F2(x1, x2) (4)

On the lateral sides of the cavity, the lubrication assumption can only accommodate the
no-penetration condition, but the fluid is forced to slip. The free surface is given by
x1=F(x1, x2, t), so that the evolution of the front is dictated by the kinematic condition

u1(x1=F, x2, x3, t)=
dF
dt

(x2, x3, t) (5)

and the dynamic condition expresses the traction in terms of surface-tension effects, reading

−pn+� [�u+ (�u)t] ·n= −�(� ·n)n, x��f(t) (6)

where n(x, t) is the normal vector to the free surface, and the superscript t denotes matrix
transposition. Finally, it is noted that the flow is induced by an applied flow rate at the
boundary source, �s.

2.2. Lubrication equations and boundary conditions

The problem above is now formulated in the narrow-gap limit. In this study, L1 and L2 will
be taken to be of the same order, L, so that the dimensionless variables may be introduced as
follows

(x, y)=
1
L

(x1, x2), z=
x3

H0

, t=
V
L

T,

(ux, uy)=
1
V

(u1, u2), uz=
L

VH0

u3, p=
�H0

L
�2 L

�V
P,

(7)

where V is a typical (reference) velocity. Three important dimensionless groups emerge in the
problem, namely, the aspect ratio, �, the Reynolds number, Re, and the capillary number, Ca :

Re=
�VL

�
, �=

H0

L
, Ca=

�V
�

(8)

In dimensionless form, and if terms of O(�2) and higher are excluded, then the conservation
equations in (1) reduce to

u�,�+uz,z=0 (9)

�2Re(u�,t+uju�, j)= −p,�+u�,zz, p,z=0 (10)
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where a Greek index corresponds to x and y, and a Latin index corresponds to x, y and z.
Note that the term �2Re is not necessarily negligible since Re may be large enough for this term
to be of order one. However, for most polymeric flows, the Reynolds number is small enough
for inertia effects to be negligible. This is more so for the flow in a thin cavity since ��1. In
this case, the momentum equation is integrated along z to give:

u�=
p,�

2
(z−h2)(z−h1) (11)

where h1=F1/H0 and h2=F2/H0 are the dimensionless heights of the lower and upper rigid
surfaces respectively. If the continuity equation is integrated between z=h1 and z=h2, and
expression (11) is used, then the following equation for the pressure is obtained

(h3p,x),x+ (h3p,y),y=0 (12)

where h=H/H0 is the dimensionless thickness of the cavity. If the thickness is constant, then
the pressure is dictated by the Laplace’s equation

p,xx+p,yy=0 (13)

Most cavities of practical interest have a constant thickness, particularly in relation to
injection molding. For simplicity, in this work, h will then be assumed to be constant. The
problem thus reduces to solving the Laplace’s equation (13) in the (x, y) plane.

Regarding the boundary conditions, the lubrication formulation does not accommodate
adherence conditions at the lateral walls, at x2=0 and x2=L2 (for straight lateral walls). Stick
boundary conditions can only be applied at the bottom and upper surfaces, x3=F1 and
x3=F2 respectively. In this case, only the no-penetration condition applies along the lateral
walls. The flow is assumed to be driven by an imposed (dimensionless) pressure gradient,
q0(y, z, t), at x=0, so that the general boundary condition at the entrance to the cavity is given
by

q(x=0, y, z, t)=q0(y, z, t) (14)

where q=n ·�p is the normal derivative of the pressure. The pressure gradient may be either
maintained fixed at all time, or adjusted according to the flow conditions inside the cavity
(mold). A time-dependent pressure gradient corresponds typically to the inlet condition in
injection molding where the pressure rather than the flow rate is varied with time at the source
of fluid. Although a variable pressure gradient can be easily accommodated by the present
formulation, q0 will be assumed to depend only on y. Since the lubrication assumption can
only accommodate the no-penetration conditions at the lateral walls, then

n(x, t) ·�p(x, t)=0, x��w(t) (15)

where n is the unit normal to �w(t).
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At the front (free surface) the imposition of a suitable dynamic condition is not obvious for
thin-cavity flow. It is clear from condition (6) that for the general three-dimensional flow, and
in the absence of surface tension effect, a zero-traction condition must apply at the front.
Consider now the dynamic condition at the front, which, in dimensionless form, is represented
by x=X(y, z, t) for z� [h1, h2], and t�0. Let n(y, z, t) be the unit normal vector to the front.
The dynamic condition (6) at x=X(y, z, t) becomes, upon projection in the lateral directions

pn�−�2(u�,�+u�,�)n�−�u�,znz=
�

Ca
(�n�,�+nz,z)n� (16)

and in the transverse direction

pnz−�u�,z−2�2uz,z=
�

Ca
(�n�,�+nz,z)nz (17)

Higher-order terms in Equations (16) and (17) can only be identified once the expressions
for the normal vector components and their derivatives are given explicitly. For a point
(x, y, z) that belongs to the free surface, the components of the normal vector must satisfy

nx dx+ny dy+�nz dz=0 (18)

The kinematic condition at the front

dx
dt

=
dX
dt

also gives

dx−X,ydy−X,zdz−X,tdt=0 (19)

The differential dt can be expressed in terms of dx and dy by noting that, at the free surface

u=
dX(y, z, t)

dt
(20)

which leads to

dt=
� X,y

u−X,t

�
dy+

� X,z

u−X,t

�
dz (21)

Substituting for dt from Equation (21) into Equation (19), and comparing the resulting
equation with Equation (18) give the (normalized) components of the unit normal vector to
leading order in �
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nx��
�u−X,t

X,z

�
, ny� −�

uX,y

X,z

, nz� −u (22)

It is not difficult to conclude that, to leading order in �, and upon substituting expressions (22)
into Equations (16) and (17), Equation (16) is readily satisfied, and Equation (17) leads to the
vanishing of the pressure at the free surface

p(x=X, y, z, t)=0 (23)

In reaching condition (23), it is assumed that Ca�O(1). In fact, for polymeric fluids, Ca is
large enough for surface-tension effects to be negligible. Finally, the remaining boundary
condition is the kinematic condition at the free surface, which is the least obvious among the
boundary conditions to implement. The kinematic condition relates the evolution of the free
surface to the local velocity field. The free surface deforms in accord with the instantaneous
and local velocity field, thus determining new free surface positions with time. In a Lagrangian
representation, such as the present formulation, the moving boundary may be assumed to
deform with the fluid velocity, such that the evolution of �f(t) is governed by the equation

dx
dt

=u(x, t), x��f(t) (24)

Although easy to implement, the resulting scheme based on Equation (24) tends to sweep
points on the moving boundary along the tangent to the moving boundary, even if only small
shape changes take place. Consequently, frequent redistribution of the moving boundary
points or remeshing would be necessary to implement.

Alternatively, and in this paper, the free surface is assumed to deform pointwise along the
normal with the normal projection of the fluid velocity at the free surface [1]. This method
keeps the points evenly distributed on the free surface. Thus, the following kinematic boundary
condition is assumed to hold on �f(t)

dx
dt

=n(x, t)[n(x, t) ·u(x, t)], x��f(t) (25)

The form (25) is particularly suited when a boundary element approach is used as will be
observed next.

3. SOLUTION PROCEDURE

In this section, the boundary integral equation is briefly reviewed in the context of free-surface
flow. The front-tracking scheme is discussed in some detail. The domain of computation will
be the projection, �xy(t), in the (x, y) plane, of �(t) occupied by the fluid at time t. For
convenience, the subscript xy will be dropped.
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3.1. Boundary integral equation

The general boundary integral equation for a point x(x, y)��(t)��(t) is simply stated [36]

c(x, t)p(x, t)+
�

�(t)

p(y, t)q*(x�y) d�y−
�

�(t)

q(y, t)p*(x�y) d�y=0 (26)

where q(x, t)=n(x, t) ·�p(x, t) is the normal derivative of the pressure, �(t) is the boundary
surrounding the domain �(t), and c(x, t)=1 for x��(t) and c(x, t)=1/2 for x��(t) if the
boundary is (Lyapunov) smooth. The fundamental pressure and normal derivative solutions to
the problem are given by

p*(x�y)=
1

4� �x−y� , q*(x�y)=n(y, t) ·�p*(x�y) (27)

Note that n(x, t) is the outward unit normal vector to the boundary. Equation (26) is rewritten
more explicitly once the boundary conditions on �(t)=�s��w(t)��f(t), are applied. It is
recalled that �s is the source part of the boundary, where q=qs(x), �w(t) is the wetted wall
where q=0, and �f(t) is the front where p=0. Thus, at the wall, for x��s��w(t), Equation
(26) reduces to

c(x, t)p(x, t)+
�

�w(t)��s

p(y, t)q*(x�y) d�y−
�

�f(t)

q(y, t)p*(x�y) d�y=
�

�s

qs(y)p*(x�y) d�y

(28)

and at the front, for x��f(t), one has

�
�w(t)��s

p(y, t)q*(x�y) d�y−
�

�f(t)

q(y, t)p*(x�y) d�y=
�

�s

qs(y)p*(x�y) d�y (29)

It is Equation (29) that is of particular interest since it allows the determination of q(x��f, t),
which, in turn and through (11), yields the value of the velocity at the front. The equation
must, however, be solved simultaneously with Equation (28).

When the boundary is Lyapunov smooth, which requires that a local tangent to the free
surface exists everywhere, the function c(x, t)=1/2. This is the case if linear boundary
elements are used. Thus, the assumption of boundary smoothness is generally not valid in the
vicinity of sharp corners, cusps or edges. In general, since c(x, t) depends solely on geometry,
it may be evaluated assuming that a uniform pressure field such as p(x, t)=1 is applied over
the boundary. Under these conditions, all derivatives (including q) must vanish. Hence, at any
time t, Equation (28) reduces to

c(x, t)= −
�

�w(t)��s��f(t)

q*(x�y) d�y (30)
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Thus, at any time t, the form of the boundary �(t) is determined, and the function c(x, t) is
evaluated using the equation above.

3.2. Discretization and front tracking

The solution of Equations (28) and (29) is very similar to that of the integral equation in
potential theory. In the present case, however, the domain changes with time. Linear segments
are used in the discretization of �(t) since they can yield an arbitrary degree of accuracy by
increasing the number of boundary elements. An Eulerian finite difference scheme is imple-
mented to solve Equation (25) and update the front position once q(x��f, t) is determined at
a given time step. If the expression (11) for the velocity is applied at the front, and is
substituted into Equation (25), one has the following equation

dx
dt

=q(x, t)(z−h1)(z−h2)n(x, t)/2, x��i(t) (31)

which governs the evolution of the front at a given height, z. It must understood that x in
Equation (31) is the position vector of a point at the front in the (x, y) plane. Since for linear
segments, the BEM yields the values of the velocity and traction at the centroid of the
segments, the velocity and normal vectors at the nodes are computed by simply taking the
average over the two connecting segments. More accurate evaluation of nodal values are of
course possible, by either increasing the order of the boundary elements or using higher-order
interpolation. For example, Engelman et al. introduced the notion of mass-consistent normals
for the same type of problem [10].

4. NUMERICAL ASSESSMENT AND RESULTS

The formulation and numerical solution procedure are now applied to the transient free-
surface flow inside thin cavities. Two illustrations are covered: the flow inside a flat cavity, and
the flow inside a curved cavity. All results are given in terms of dimensionless quantities. The
accuracy and convergence of the method are also assessed.

4.1. Transient flow inside a flat ca�ity and numerical assessment

Consider the flow inside a flat cavity of constant thickness. The cavity has a length-to-width
ratio equal to 4/3. The length and the width are taken to lie along the x- and y-directions
respectively, and the fluid flows predominantly in the x-direction, with a strong secondary flow
in the y-direction. The projected initial domain occupied by the fluid is given by x=y(y−2)
for y� [0, 2]. Figure 2 shows the evolution of the front in the mid-plane (z=0.5) between the
two flat plates. The front is shown at equal time intervals of 0.25 units, over a period of 25
time units. The initial domain is included in the figure. Note that the fluid at the points (0, 0)
and (0, 2) is assumed to adhere to the x=0 line. In the early stages of flow, the fluid has a
relatively strong lateral movement as reflected by the second position of the front, which
indicates that the fluid will have contacted the lateral walls in less than 1 time unit. It is
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Figure 2. Transient flow inside a flat plate with initial rectangular domain. The fronts are shown at equal
time intervals over a period of 25 time units.

interesting to observe from Figure 2 that the first contact between fluid and lateral walls does
not occur at x=0, but at roughly x=0.25. The lateral movement continues to expand the
fluid until the corners (0, −0.5) and (0, 2.5) are covered, which happens at a time t�0.5. The
figure indicates that the spacing between two successive fronts diminishes with time, which
means that the fluid becomes harder to drive with time. This is of course expected in this case
given the (time) constant flow rate that is imposed at the entrance. In practice, however, such
as in injection molding, the pressure gradient is adjusted with time for a desired rate of cavity
filling.

A better quantitative assessment is possible by monitoring the time evolution of the front tip
position, Xmax(t), and the evolution of the contact point, Xc(t). The evolution of the two points
is depicted from Figure 3 over 25 time units. The starting point, at t=0, is Xmax=1 for the
front tip, corresponding to the initial fluid domain shown in the figure. The front evolves
initially very fast, as indicated by the relatively large acceleration from the Xmax curve, and
reaches the opposite cavity wall at x=4 at t=10. There is a significant deceleration before the
fluid reaches the opposite wall. The upper constant line in the figure (Xmax=4) indicates that
the front tip is no longer moving for t�10. The rest of the fluid, however, is still moving for
t�10, as indicated by the evolution of the contact point position, Xc, in the figure. The fluid
comes in contact with the lateral walls early, at t=0.8. Xc then evolves similarly to but at a
slower rate than Xmax, and reaches the opposite cavity wall at roughly t=25, a time at which
the filling is considered to be completed.

The results shown in Figures 2 and 3 are obtained on the basis of a time increment equal
to �t=0.1 time unit. This relatively large time increment turned out to be amply adequate to
reach an acceptable accuracy in the calculations. This conclusion is based on several time
increments that were used to assess the influence of �t on the evolution of the flow and front
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Figure 3. Evolution of the front tip position, Xmax, and the contact point position, Xc, along the lateral
walls with time for the transient flow problem in Figure 2.

with time. Calculations were carried out for the range for 0.05��t�0.1. The evolution of the
contact point position, Xc(t), was monitored. It was clear from the results that the time
increment has essentially no significant influence on the flow. However, this conclusion is valid
for the time range of flow considered in this work. As expected, and as the figure indicates, the
accuracy of the results begins to decrease when a relatively large time increment is used. The
influence of mesh size was examined by varying the number of boundary elements, N. Three
mesh sizes were considered, corresponding to N=80, 160 and 320 elements. Again, no
significant improvement was observed when a relatively high number of elements were used.
This observation was valid over the whole range of time. Consequently, all results reported in
this paper are based on N=80.

The flow field at the front is further appreciated by examining the velocity components at
the front, U(y, t) and V(y, t), along the x- and y-directions respectively. Figures 4 and 5 show
the distributions of the axial and lateral components at different time stages between t=0.8
and 25. The discrepancy between the velocity of the front tip and the points of contact is
obvious from Figure 4, especially in the early stages. The figure shows, for instance, that
U(1, 0.8)�0.9, while U(−0.5, 0.8)=U(2.5, 0.8)�0.3. This discrepancy decreases with time.
The figure also shows that the velocity tends to generally converge in the long time everywhere
including near the lateral walls. When the fluid touches the solid wall, there is an abrupt
decrease (to zero) between the velocity of the moving part and the stagnant part as indicated
by the 24.9 curve. The lateral velocity component, V(y, t), is strongest initially, and is generally
of the same order of magnitude as U(y, t), as depicted from Figure 5. As expected, the lateral
velocity vanishes at y= −0.5 and 2.5. However, there is a sharp drop in V(y, t) near the
lateral boundaries. It is also interesting to observe from Figure 5 that V(y, t) is highly
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Figure 4. Distribution of the axial velocity component, U(y, t), at the front for 0.8� t�25, for the flow
in Figure 3.

Figure 5. Distribution of the lateral velocity component, V(y, t), at the front for 0.8� t�25, for the
flow in Figure 3.

non-linear near the walls, and is essentially linear in the bulk region. The overall non-linear
behavior is further assessed in Figure 6, which shows the phase plots in the (U, V) plane for
the same time stages as in Figures 4 and 5. The phase plots are closed orbits that are similar
to those emerging from dynamical systems. They tend to decrease in the overall diameter,
confirming the weakening of the flow with time.
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Figure 6. Phase plot of the axial and lateral velocity components, U(y, t) and V(y, t), at the front for
0.8� t�25, for the flow in Figure 3.

4.2. Transient free-surface flow inside a cur�ed ca�ity

The results on the flow inside a flat cavity in Figures 2 and 3 clearly illustrate the strong
influence of the initial domain on the ensuing flow sequence. To this must be added the
influence of the inlet flow pressure, which can be adjusted to compensate, for instance, the loss
of flow near the lateral walls as indicated in Figure 3. However, this adjustment is not needed
in this case given the slip at the lateral walls, which allows the flow at the walls to catch up
with the flow in the middle region. In this section, the flow in a curved three-dimensional
cavity is examined, which illustrates further the intricacies resulting from the influence of the
inlet flow, the shape of the initial domain, and the slip at the lateral walls.

So consider the flow inside the curved parabolic cavity whose mid-surface is given by
z= −4/81x(x−6)(y−2.5)(y+0.5), where (x, y)� [0, 4]× [−0.5, 2.5]. Thus the maximum in z
occurs at the point (x=3, y=1) and is equal to 1. The region occupied initially by the fluid
domain has a projection in the (x, y) plane given by x=y(y−2) for y� [0, 2] as in the case of
the flow inside the flat plate depicted in Figure 3. The resulting flow sequence is shown in
Figure 7 for a period of 50 time units. The scale in the figure indicates the front at six
successive unequal intervals. The remarkable feature of the flow is that, although the flow is
very similar to that in the case of a flat plate (Figure 2), contact in this case occurs much later,
which will become obvious once the projection on the (x, y) plane is examined. This suggests
that the lateral flow is much weaker in this case. A more accurate assessment is obtained by
examining the projections of the fronts onto the (x, y), (x, z) and (y, z) planes, which are
shown in Figures 8–10 respectively. Figure 8 indicates clearly the difficulty of the fluid to come
in contact with the lateral walls. In fact, all four corners take a relatively long time to be filled.
This is reflected by the high density of curves along the edges in Figures 8–10. The evolutions
of the front tip along x, Xmax(t), that of the contact point, Xc(t), and that of the maximum
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Figure 7. Transient flow inside a curved thin cavity. The fronts are shown at times t=0, 0.5, 1.0, 1.75,
2.5 and 50 over a period of 50 time units.

Figure 8. Projection of the fronts of transient flow in Figure 7 in the (x, y) plane.

height, Zmax(t), are shown in Figure 11. The results for Xmax and Xc should be compared to
those in Figure 3. It is interesting to observe that the behavior of Xmax is essentially linear with
time in the initial stages, similarly to the flow inside a flat plate (Figure 3). There is even a
slight acceleration toward the end of the simulation. The contact point and the maximum
height, on the other hand, tend to accelerate initially, eventually decelerating. Their rate of
advance, however, remains higher than that of the front tip. The Zmax curve indicates that the
maximum height is reached much earlier than the first contact with the lateral walls.

The flow field at the front is further appreciated by examining the velocity vector at the
front. Figures 12 and 13 show the distributions of the axial and lateral components of the
velocity at the fronts of Figure 7, U(y, t) and V(y, t) respectively. The profiles are shown over
different time stages. The discrepancy between the velocity of the front tip, U(1, t), and that
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Figure 9. Projection of the fronts of transient flow in Figure 7 in the (x, z) plane.

Figure 10. Projection of the fronts of transient flow in Figure 7 in the (y, z) plane.

of the points of contact is significant initially, but not as much in Figure 4. This discrepancy
not only decreases with time, but the tip eventually begins to recede relative to the lateral walls.
Although the velocity tends to generally converge in the long time everywhere, this rate of
convergence is much smaller than in Figure 4. Similarly to Figure 5, the lateral velocity
component, V(y, t), is strongest initially, but is generally one order of magnitude smaller than
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Figure 11. Evolution of the front tip position, Xmax, the contact point position, Xc, along the lateral
walls, and maximum height, Zmax, with time for the transient flow problem in Figure 6.

Figure 12. Distribution of the axial velocity component, U(y, t), at the front for 0� t�50, for the flow
in Figure 7.

U(y, t), as depicted from Figure 13. Although the lateral velocity vanishes at y= −0.5 and
2.5, there is no sharp drop in V(y, t) near the lateral boundaries as in Figure 5. The overall
non-linear behavior is further assessed in Figure 14, which shows the phase plot in the (U, V)
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Figure 13. Distribution of the lateral velocity component, V(y, t), at the front for 0� t�50, for the flow
in Figure 7.

Figure 14. Phase plot of the axial and lateral velocity components, U(y, t) and V(y, t), at the front for
0� t�50, for the flow in Figure 7.

plane. The phase plots are closed orbits. The orbits in the early stages are reminiscent of the
limit cycle of a harmonic oscillator. They decrease in their overall diameter as in Figure 6,
indicating a weakening in the flow. There is a growing distortion of the orbits, reflecting a
growth in non-linearity with time, which is typically reflected by the t=3.75 orbit.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 399–418



FLOW IN A THREE-DIMENSIONAL THIN CAVITY 417

5. CONCLUSION

The general lubrication formulation is extended for transient free-surface flows inside a
three-dimensional thin cavity. A fully Lagrangian boundary element approach is used to solve
the moving-boundary problem. In this work, inertia is neglected, and the pressure becomes
independent of the height variable (z). Two transient free-surface flow configurations are
examined. In both cases, the driving pressure gradient is parabolic and maintained fixed at the
cavity entrance. First, the flow inside a flat plate with the fluid occupying initially a parabolic
domain is studied. In this case, the flow in the middle region tends to accelerate initially
relative to the flow at the lateral walls. However, the slip at the walls eventually renders the
front straight again, leading to a plug-flow situation in the (x, y) plane. There is a strong
lateral flow initially as indicated by the velocity distribution along the front. This flow,
however, diminishes in intensity, leading to the straightening of the front with time. Secondly,
the flow inside a curved cavity shows that the fluid tends to advance more rapidly than inside
the flat plate. This results in a significant delay in the fluid contacting the lateral walls. The
present work illustrates clearly the usefulness of the boundary element code to problems
involving a complex three-dimensional geometry as encountered in the polymer processing
industry.
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